دوره 23، شماره 29 - ( 4-1404 )                   جلد 23 شماره 29 صفحات 252-220 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazeminasab F, Mohebinejad M, Azali Alamdari K. The Impact Of High-Intensity Interval Training On Cardiometabolic Factors In Adults With Overweight And Obesity: A Systematic Review And Meta-Analysis. RSMT 2025; 23 (29) :220-252
URL: http://jsmt.khu.ac.ir/article-1-631-fa.html
کاظمی نسب فاطمه، محبی نژاد مطهره، آزالی علمداری کریم. اثر تمرین تناوبی بر عوامل کاردیومتابولیک در بزرگسالان دارای اضافه‌وزن و چاق: مرور نظام‌مند و فراتحلیل. پژوهش در طب ورزشی و فناوری. 1404; 23 (29) :220-252

URL: http://jsmt.khu.ac.ir/article-1-631-fa.html


گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی، دانشگاه کاشان، کاشان، ایران. ، f_kazemi85@yahoo.com
چکیده:   (3585 مشاهده)
هدف: تجمع چربی اضافی در بدن با بیماری‌های قلبی عروقی، دیابت و پرفشار خونی مرتبط است. هدف مطالعه حاضر تعیین اندازه اثر تمرین تناوبی شدید (HIIT) بر عوامل مرتبط بر عوامل کاردیومتابولیک در بزرگسالان دارای اضافه‌وزن و چاق بود.
روش‌ها: جستجو برای مقالات انگلیسی در پایگاه­های اطلاعاتی وب آو ساینس، اسکوپوس و پابمد بدون محدودکردن سال انتشار تا فوریه سال 2023 انجام شد. محاسبه اندازه اثر (WMD) با فاصله اطمینان 95 % با استفاده از مدل اثر تصادفی محاسبه شد. همبستگی بین متغیرها با استفاده از فرا رگرسیون مدل اثرات ثابت بررسی شد.
یافته­‌ها: 13 مطالعه دربردارنده 466 آزمودنی بزرگسال دارای اضافه‌وزن و چاق (149 زن و 317 مرد) با دامنه سنی 7/24-57 سال وارد فراتحلیل شدند. نتایج نشان داد که HIIT نسبت به شرایط کنترل، سبب کاهش قابل‌ملاحظه قند خون ناشتا ]002/0P=،mg/dL 65/8-=[WMD، انسولین ناشتا ]005/0P=،U/L 88/1-= [WMD و کاهش مختصر در فشارخون دیاستولی ]03/0P=،mmHg 33/3-= [WMD می‌شود. در بررسی‌های فرا رگرسیونی، در بین مقدار اندازه اثر تمرینات HIIT بر فشارخون دیاستولی به ترتیب با مقدار اندازه اثر بر انسولین ناشتا (019/0=P، 32/0- = r) و سن آزمودنی‌ها (037/0=P، 29/0- = r) همبستگی‌های ضعیفی مشاهده شد.

نتیجه­‌گیری: تمرین تناوبی شدید سبب کاهش معنادار گلوکز، انسولین ناشتا و فشارخون دیاستولی در بزرگسالان دارای اضافه‌وزن و چاق می­شود. کاهش فشار دیاستولی در سنین بالاتر بیشتر است و همچنین این تغییرات با مقدار انسولین خون مرتبط می‌باشد. بنابراین تمرینات HIIT به عنوان راهکار غیردارویی موثر برای پیشگیری از بروز عوامل خطر قلبی متابولیکی آینده در این جمعیت پیشنهاد می­شود.
متن کامل [PDF 2777 kb]   (15 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی ورزشی
دریافت: 1403/2/25 | پذیرش: 1403/7/6 | انتشار: 1404/4/10

فهرست منابع
1. Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. Journal of Obesity. 2012;2012.Doi: 10.1155/2012/480467 [DOI:10.1155/2012/480467]
2. Iwamoto SJ, Abushamat LA, Zaman A, Millard AJ, Cornier M-A. Obesity Management in Cardiometabolic Disease: State of the Art. Current Atherosclerosis Reports. 2021;23(10):59. Doi:10.1007/s11883-021-00953-0 [DOI:10.1007/s11883-021-00953-0]
3. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot FJFip. Chronic adipose tissue inflammation linking obesity to insulin resistance and type2diabetes.2020;10:1607.Doi: 10.3389/fphys.2019.01607 [DOI:10.3389/fphys.2019.01607]
4. Sims EA, Danforth EJTJoci. Expenditure and storage of energy in man. 1987;79(4):1019-25. Doi: 10.1172/JCI112913 [DOI:10.1172/JCI112913]
5. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ open sport & exercise medicine. 2016;2(1):e000143.Doi: 10.1136/bmjsem-2016-000143 [DOI:10.1136/bmjsem-2016-000143]
6. Govers E. Obesity and Insulin Resistance Are the Central Issues in Prevention of and Care for Comorbidities. 2015;3(2):408-16.Doi: 10.3390/healthcare3020408 [DOI:10.3390/healthcare3020408]
7. Remchak ME, Piersol KL, Bhatti S, Spaeth AM, Buckman JF, Malin SK. Considerations for Maximizing the Exercise "Drug" to Combat Insulin Resistance: Role of Nutrition, Sleep, and Alcohol. Nutrients. 2021;13(5).Doi:10.3390/nu13051708 [DOI:10.3390/nu13051708]
8. Marcinko K, Sikkema SR, Samaan MC, Kemp BE, Fullerton MD, Steinberg GR. High intensity interval training improves liver and adipose tissue insulin sensitivity. Molecular metabolism. 2015;4(12):903-15.Doi: 10.1016/j.molmet.2015.09.006 [DOI:10.1016/j.molmet.2015.09.006]
9. Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. 2020;105(8):e2941-e59.Doi: 10.1210/clinem/dgaa345 [DOI:10.1210/clinem/dgaa345]
10. Campbell WW, Kraus WE, Powell KE, Haskell WL, Janz KF, Jakicic JM, et al. High-Intensity Interval Training for Cardiometabolic Disease Prevention. Medicine and science in sports and exercise. 2019;51(6):1220-6.Doi: 10.1249/MSS.0000000000001934 [DOI:10.1249/MSS.0000000000001934]
11. Hayes LD, Herbert P, Sculthorpe N, Grace F. High intensity interval training (HIIT) produces small improvements in fasting glucose, insulin, and insulin resistance in sedentary older men but not masters athletes. Experimental Gerontology. 2020;140:111074.Doi: 10.1016/j.exger.2020.111074 [DOI:10.1016/j.exger.2020.111074]
12. Wu H, Ballantyne CMJCr. Metabolic inflammation and insulin resistance in obesity. 2020;126(11):1549-64.Doi:10.1161/CIRCRESAHA.119.315896 [DOI:10.1161/CIRCRESAHA.119.315896]
13. ter Horst KW, van Galen KA, Gilijamse PW, Hartstra AV, De Groot P, Van Der Valk F, et al. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans. 2017;41(8):1288-94.Doi: 10.1038/ijo.2017.110 [DOI:10.1038/ijo.2017.110]
14. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ. Abdominal Fat and Insulin Resistance in Normal and Overweight Women: Direct Measurements Reveal a Strong Relationship in Subjects at Both Low and High Risk of NIDDM. Diabetes. 1996;45(5):633-8. Doi: 10.2337/diab.45.5.633 [DOI:10.2337/diab.45.5.633]
15. De Nardi AT, Tolves T, Lenzi TL, Signori LU, da Silva AMVJDr, practice c. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. 2018;137:149-59.Doi: 10.1016/j.diabres.2017.12.017 [DOI:10.1016/j.diabres.2017.12.017]
16. Liu J-x, Zhu L, Li P-j, Li N, Xu Y-b. Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clinical and Experimental Research. 2019;31(5):575-93.Doi: 10.1007/s40520-018-1012-z [DOI:10.1007/s40520-018-1012-z]
17. Mateo-Gallego R, Madinaveitia-Nisarre L, Giné-Gonzalez J, Bea AM, Guerra-Torrecilla L, Baila-Rueda L, et al. The effects of high-intensity interval training on glucose metabolism, cardiorespiratory fitness and weight control in subjects with diabetes: Systematic review a meta-analysis. 2022:109979.Doi: 10.1016/j.diabres.2022.109979 [DOI:10.1016/j.diabres.2022.109979]
18. Khalafi M, Ravasi AA, Malandish A, Rosenkranz SK. The impact of high-intensity interval training on postprandial glucose and insulin: A systematic review and meta-analysis. Diabetes Research and Clinical Practice. 2022;186:109815.Doi: 10.1016/j.diabres.2022.109815 [DOI:10.1016/j.diabres.2022.109815]
19. Jelleyman C, Yates T, O'Donovan G, Gray LJ, King JA, Khunti K, Davies MJJOr. The effects of high‐intensity interval training on glucose regulation and insulin resistance: a meta‐analysis. 2015;16(11):942-61.Doi: 10.1111/obr.12317 [DOI:10.1111/obr.12317]
20. Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning ASJBjosm. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. 2017;51(6):494-503.Doi: 10.1136/bjsports-2015-095841 [DOI:10.1136/bjsports-2015-095841]
21. Vladimirovna SVJI. PATHOGENETIC RELATIONSHIPS OF ARTERIAL HYPERTENSION AND INSULIN RESISTANCE. 2023;2(1):685 91.
22. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod PJTJoci. Nitric oxide release accounts for insulin's vascular effects in humans. 1994;94(6):2511-5.Doi: 10.1172/JCI117621 [DOI:10.1172/JCI117621]
23. Fukuda N, Satoh C, Hu W-Y, Nakayama M, Kishioka H, Kanmatsuse KJJoh. Endogenous angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats. 2001;19(9):1651-8.Doi: 10.1097/00004872-200109000-00018 [DOI:10.1097/00004872-200109000-00018]
24. Lembo G, Napoli R, Capaldo B, Rendina V, Iaccarino G, Volpe M, et al. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. 1992;90(1):24-9.Doi: 10.1172/JCI115842 [DOI:10.1172/JCI115842]
25. Sowers JRJNEJoM. Hypertension, angiotensin II, and oxidative stress. Mass Medical Soc; 2002. p. 1999-2001.Doi: 10.1056/NEJMe020054 [DOI:10.1056/NEJMe020054]
26. 26. Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco CJHBP, Prevention C. Insulin resistance the hinge between hypertension and type 2 diabetes. 2020;27:515-26.Doi: 10.1007/s40292-020-00408-8 [DOI:10.1007/s40292-020-00408-8]
27. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews. 2015;4(1):1-9.Doi: 10.1186/2046-4053-4-1 [DOI:10.1186/2046-4053-4-1]
28. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. 2008. Doi:10.1002/9780470712184 [DOI:10.1002/9780470712184]
29. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology. 2014;14:1-13.Doi: 10.1186/1471-2288-14-135 [DOI:10.1186/1471-2288-14-135]
30. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC medical research methodology. 2005;5(1):1-10.Doi: 10.1186/1471-2288-5-13 [DOI:10.1186/1471-2288-5-13]
31. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557-60.Doi: 10.1136/bmj.327.7414.557 [DOI:10.1136/bmj.327.7414.557]
32. Copas J, Shi JQ. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics. 2000;1(3):247-62.Doi: 10.1093/biostatistics/1.3.247 [DOI:10.1093/biostatistics/1.3.247]
33. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629-34.Doi: 10.1136/bmj.315.7109.629 [DOI:10.1136/bmj.315.7109.629]
34. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Australian Journal of Physiotherapy. 2009;55(2):129-33.Doi: 10.1016/s0004-9514(09)70043-1 [DOI:10.1016/S0004-9514(09)70043-1]
35. Tucker WJ, Jarrett CL, D'Lugos AC, Angadi SS, Gaesser GA. Effects of indulgent food snacking, with and without exercise training, on body weight, fat mass, and cardiometabolic risk markers in overweight and obese men. Physiological reports. 2021;9(22):e15118.Doi: 10.14814/phy2.15118 [DOI:10.14814/phy2.15118]
36. Mora-Rodriguez R, Ortega J, Ramirez-Jimenez M, Moreno-Cabañas A, Morales-Palomo F. Insulin sensitivity improvement with exercise training is mediated by body weight loss in subjects with metabolic syndrome. Diabetes & metabolism. 2020;46(3):210-8.Doi: 10.1016/j.diabet.2019.05.004 [DOI:10.1016/j.diabet.2019.05.004]
37. Smith-Ryan AE, Melvin MN, Wingfield HL. High-intensity interval training: Modulating interval duration in overweight/obese men. The Physician and sportsmedicine. 2015;43(2):107-13.Doi: 10.1080/00913847.2015.1037231 [DOI:10.1080/00913847.2015.1037231]
38. Morales-Palomo F, Ramirez-Jimenez M, Ortega JF, Mora-Rodriguez R. Exercise Periodization over the Year Improves Metabolic Syndrome and Medication Use. Medicine and science in sports and exercise. 2018;50(10):1983-91.Doi: 10.1249/MSS.0000000000001659 [DOI:10.1249/MSS.0000000000001659]
39. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation. 2008;118(4):346-54.Doi: 10.1161/CIRCULATIONAHA.108.772822 [DOI:10.1161/CIRCULATIONAHA.108.772822]
40. Reljic D, Konturek P, Herrmann H, Siebler J, Neurath M, Zopf Y. Very low-volume interval training improves nonalcoholic fatty liver disease fibrosis score and cardiometabolic health in adults with obesity and metabolic syndrome. Journal of Physiology & Pharmacology. 2021;72(6).Doi: 10.26402/jpp.2021.6.10
41. Saeidi A, Shishvan SR, Soltani M, Tarazi F, Doyle-Baker PK, Shahrbanian S, et al. Differential effects of exercise programs on neuregulin 4, body composition and cardiometabolic risk factors in men with obesity. Frontiers in physiology. 2022;12:797574.Doi: 10.3389/fphys.2021.797574 [DOI:10.3389/fphys.2021.797574]
42. Smith-Ryan AE, Melvin MN, Wingfield HL. High-intensity interval training: Modulating interval duration in overweight/obese men. Phys Sportsmed. 2015;43(2):107-13.Doi: 10.1080/00913847.2015.1037231 [DOI:10.1080/00913847.2015.1037231]
43. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes Metab. 2018;20(5):1131-9.Doi: 10.1111/dom.13198 [DOI:10.1111/dom.13198]
44. Lee AS, Johnson NA, McGill MJ, Overland J, Luo C, Baker CJ, et al. Effect of High-Intensity Interval Training on Glycemic Control in Adults With Type 1 Diabetes and Overweight or Obesity: A Randomized Controlled Trial With Partial Crossover. Diabetes Care. 2020;43(9):2281-8.Doi: 10.2337/dc20-0342 [DOI:10.2337/dc20-0342]
45. Mora-Rodriguez R, Ortega JF, Ramirez-Jimenez M, Moreno-Cabañas A, Morales-Palomo F. Insulin sensitivity improvement with exercise training is mediated by body weight loss in subjects with metabolic syndrome. Diabetes Metab. 2020;46(3):210-8.Doi: 10.1016/j.diabet.2019.05.004 [DOI:10.1016/j.diabet.2019.05.004]
46. Tucker WJ, Jarrett CL, D'Lugos AC, Angadi SS, Gaesser GA. Effects of indulgent food snacking, with and without exercise training, on body weight, fat mass, and cardiometabolic risk markers in overweight and obese men. Physiol Rep. 2021;9(22):e15118.Doi: 10.14814/phy2.15118 [DOI:10.14814/phy2.15118]
47. Mohammad Rahimi GR, Bijeh N, Rashidlamir A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp Physiol. 2020;105(3):449-59.Doi: 10.1113/EP088036 [DOI:10.1113/EP088036]
48. Morales-Palomo F, Ramirez-Jimenez M, Ortega JF, Mora-Rodriguez R. Exercise Periodization over the Year Improves Metabolic Syndrome and Medication Use. Med Sci Sports Exerc. 2018;50(10):1983-91.Doi: 10.1249/MSS.0000000000001659 [DOI:10.1249/MSS.0000000000001659]
49. Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Soliman GS. A randomized controlled trial on the effectiveness of 8-week high-intensity interval exercise on intrahepatic triglycerides, visceral lipids, and health-related quality of life in diabetic obese patients with nonalcoholic fatty liver disease. Medicine (Baltimore). 2019;98(12):e14918.Doi: 10.1097/MD.0000000000014918 [DOI:10.1097/MD.0000000000014918]
50. Saeidi A, Shishvan SR, Soltani M, Tarazi F, Doyle-Baker PK, Shahrbanian S, et al. Differential Effects of Exercise Programs on Neuregulin 4, Body Composition and Cardiometabolic Risk Factors in Men With Obesity. Frontiers in Physiology. 2022;12.Doi: 10.3389/fphys.2021.797574 [DOI:10.3389/fphys.2021.797574]
51. TaheriChadorneshin H, Cheragh-Birjandi S, Goodarzy S, Ahmadabadi F. The impact of high intensity interval training on serum chemerin, tumor necrosis factor-alpha and insulin resistance in overweight women. Obesity Medicine. 2019;14.Doi:10.1016/j.obmed.2019.100101 [DOI:10.1016/j.obmed.2019.100101]
52. Reljic D, Konturek PC, Herrmann HJ, Siebler J, Neurath MF, Zopf Y. VERY LOW-VOLUME INTERVAL TRAINING IMPROVES NONALCOHOLIC FATTY LIVER DISEASE FIBROSIS SCORE AND CARDIOMETABOLIC HEALTH IN ADULTS WITH OBESITY AND METABOLIC SYNDROME. Journal of Physiology and Pharmacology. 2021;72(6):927-38. Doi: 10.26402/jpp.2021.6.10
53. Keating SE, Johnson NA, Mielke GI, Coombes JSJOr. A systematic review and meta‐analysis of interval training versus moderate‐intensity continuous training on body adiposity. 2017;18(8):943-64.Doi: 10.1111/obr.12536 [DOI:10.1111/obr.12536]
54. D'Amuri A, Sanz JM, Capatti E, Di Vece F, Vaccari F, Lazzer S, et al. Effectiveness of high-intensity interval training for weight loss in adults with obesity: a randomised controlled non-inferiority trial. BMJ open sport & exercise medicine. 2021;7(3):e001021.Doi: 10.1136/bmjsem-2020-001021 [DOI:10.1136/bmjsem-2020-001021]
55. Maillard F, Pereira B, Boisseau NJSM. Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. 2018;48:269-88.Doi: 10.1007/s40279-017-0807-y [DOI:10.1007/s40279-017-0807-y]
56. Khodadadi F, Bagheri R, Negaresh R, Moradi S, Nordvall M, Camera DM, et al. The Effect of High-Intensity Interval Training Type on Body Fat Percentage, Fat and Fat-Free Mass: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. 2023;12(6):2291.Doi: 10.3390/jcm12062291 [DOI:10.3390/jcm12062291]
57. Viana RB, Naves JPA, Coswig VS, de Lira CAB, Steele J, Fisher JP, Gentil P. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). British journal of sports medicine. 2019;53(10):655-64.Doi: 10.1136/bjsports-2018-099928 [DOI:10.1136/bjsports-2018-099928]
58. Lunt H, Draper N, Marshall HC, Logan FJ, Hamlin MJ, Shearman JP, et al. High intensity interval training in a real world setting: a randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake. 2014;9(1):e83256.Doi: 10.1371/journal.pone.0083256 [DOI:10.1371/journal.pone.0083256]
59. Boutcher SHJJoo. High-intensity intermittent exercise and fat loss. 2011;2011.Doi: 10.1155/2011/868305 [DOI:10.1155/2011/868305]
60. 60. Pritzlaff CJ, Wideman L, Blumer J, Jensen M, Abbott RD, Gaesser GA, et al. Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. 2000;89(3):937-46.Doi: 10.1152/jappl.2000.89.3.937 [DOI:10.1152/jappl.2000.89.3.937]
61. Keating SE, Johnson NA, Mielke GI, Coombes JS. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. 2017;18(8):943-64.Doi: 10.1111/obr.12536 [DOI:10.1111/obr.12536]
62. Sevits KJ, Melanson EL, Swibas T, Binns SE, Klochak AL, Lonac MC, et al. Total daily energy expenditure is increased following a single bout of sprint interval training. 2013;1(5).Doi: 10.1002/phy2.131 [DOI:10.1002/phy2.131]
63. Tucker WJ, Angadi SS, Gaesser GAJJos, research c. Excess postexercise oxygen consumption after high-intensity and sprint interval exercise, and continuous steady-state exercise. 2016;30(11):3090-7.Doi: 10.1519/JSC.0000000000001399 [DOI:10.1519/JSC.0000000000001399]
64. Timmons JF, Beatty A, Stout C, Ivory A, Carroll C, Egan BJRqfe, sport. Increased Lean Body Mass After Bodyweight-Based High Intensity Interval Training in Overweight and Obese Men. 2023;94(2):418-26.Doi: 10.1080/02701367.2021.2002247 [DOI:10.1080/02701367.2021.2002247]
65. Werle CO, Wansink B, Payne CRJA. Just thinking about exercise makes me serve more food. Physical activity and calorie compensation. 2011;56(2):332-5.Doi: 10.1016/j.appet.2010.12.016 [DOI:10.1016/j.appet.2010.12.016]
66. Rosenkilde M, Auerbach P, Reichkendler MH, Ploug T, Stallknecht BM, Sjödin AJAJoP-R, Integrative, Physiology C. Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise-a randomized controlled trial in overweight sedentary males. 2012.Doi: 10.1152/ajpregu.00141.2012 [DOI:10.1152/ajpregu.00141.2012]
67. Imbeault P, Saint-Pierre S, AlméRas N, Tremblay AJBJoN. Acute effects of exercise on energy intake and feeding behaviour. 1997;77(4):511-21.Doi: 10.1079/bjn19970053 [DOI:10.1079/BJN19970053]
68. Ferrari F, Bock PM, Motta MT, Helal LJAbdc. Biochemical and molecular mechanisms of glucose uptake stimulated by physical exercise in insulin resistance state: role of inflammation. 2019;113:1139-48.Doi: 10.5935/abc.20190224 [DOI:10.5935/abc.20190224]
69. Franklin S, Larson M, Khan S, Wong N, Leip E, Kannel W, Levy D. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103(9):1245.Doi: 10.1161/01.cir.103.9.1245 [DOI:10.1161/01.CIR.103.9.1245]
70. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. Exercise and Hypertension. Medicine & Science in Sports & Exercise. 2004;36(3):533-53.Doi: 10.1249/01.mss.0000115224.88514.3a [DOI:10.1249/01.MSS.0000115224.88514.3A]
71. Ingul C. Low volume, high intensity: Time-efficient exercise for the treatment of hypertension. European journal of preventive cardiology. 2018;25(6):569.Doi:10.1177/2047487318760 [DOI:10.1177/2047487318760040]
72. Lelbach A, Koller A. Mechanisms underlying exercise-induced modulation of hypertension. 2017. http://www.hypertens.org/contents/pdfs/jhr-201706-030201.pdf
73. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 2013:01. cir. 0000441139.02102. 80.Doi: 10.1161/01.cir.0000441139.02102.80 [DOI:10.1161/01.cir.0000441139.02102.80]
74. White DW, Fernhall B. Effects of Exercise on Blood Pressure and Autonomic Function and Other Hemodynamic Regulatory Factors. Effects of Exercise on Hypertension: Springer; 2015. p. 203-25.Doi:10.1007/978-3-319-17076-3_9 [DOI:10.1007/978-3-319-17076-3_9]
75. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports medicine. 2008;38(5):401-23.Doi: 10.2165/00007256-200838050-00004 [DOI:10.2165/00007256-200838050-00004]
76. Zelber-Sagi S, Lotan R, Shlomai A, Webb M, Harrari G, Buch A, et al. Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. Journal of hepatology. 2012;56(5):1145-51. Doi: 10.1016/j.jhep.2011.12.011 [DOI:10.1016/j.jhep.2011.12.011]
77. Pal S, Radavelli-Bagatini S, Ho S. Potential benefits of exercise on blood pressure and vascular function. Journal of the American Society of Hypertension. 2013;7(6):494-506.Doi: 10.1016/j.jash.2013.07.004 [DOI:10.1016/j.jash.2013.07.004]
78. Nishida Ki, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. The Journal of clinical investigation. 1992;90(5):2092-6. Doi: 10.1172/JCI116092 [DOI:10.1172/JCI116092]
79. Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. European journal of preventive cardiology. 2012;19(2):151-60.Doi: 10.1177/1741826711400512 [DOI:10.1177/1741826711400512]
80. Rice T, An P, Gagnon J, Leon A, Skinner J, Wilmore J, et al. Heritability of HR and BP response to exercise training in the HERITAGE Family Study. Medicine and science in sports and exercise. 2002;34(6):972.Doi: 10.1097/00005768-200206000-00011 [DOI:10.1097/00005768-200206000-00011]
81. Wen H, Wang L. Reducing effect of aerobic exercise on blood pressure of essential hypertensive patients: A meta-analysis. Medicine. 2017;96(11).Doi: 10.1097/MD.0000000000006150 [DOI:10.1097/MD.0000000000006150]
82. Alamdari KA. Influence of metabolic risk on adaptation of mean arterial pressure with endurance training and detraining: study of males with mild hypertension. Majallah-i pizishki-i Danishgah-i Ulum-i Pizishki va Khadamat-i Bihdashti-i Darmani-i Tabriz. 2017;39(1):6. https://mj.tbzmed.ac.ir/Article/17282
83. Moker EA, Bateman LA, Kraus WE, Pescatello LS. The Relationship between the Blood Pressure Responses to Exercise following Training and Detraining Periods. PLoS ONE. 2014;9(9).Doi: 10.1371/journal.pone.0105755 [DOI:10.1371/journal.pone.0105755]
84. Esteghamati A, Ashraf H, Khalilzadeh O, Zandieh A, Nakhjavani M, Rashidi A, et al. Optimal cut-off of homeostasis model assessment of insulin resistance (HOMA-IR) for the diagnosis of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007). Nutrition & Metabolism. 2010;7(1):26.Doi: 10.1186/1743-7075-7-26 [DOI:10.1186/1743-7075-7-26]
85. Wang T, Wang J, Hu X, Huang X-J, Chen G-XJWjobc. Current understanding of glucose transporter 4 expression and functional mechanisms. 2020;11(3):76.Doi: 10.4331/wjbc.v11.i3.76 [DOI:10.4331/wjbc.v11.i3.76]
86. Lembo G, Iaccarino G, Vecchione C, Rendina V, Trimarco BJH. Insulin modulation of vascular reactivity is already impaired in prehypertensive spontaneously hypertensive rats. 1995;26(2):290-3.Doi: 10.1161/01.hyp.26.2.290 [DOI:10.1161/01.HYP.26.2.290]
87. Mazzone G, Morisco C, Lembo V, D'Argenio G, D'Armiento M, Rossi A, et al. Dietary supplementation of vitamin D prevents the development of western diet-induced metabolic, hepatic and cardiovascular abnormalities in rats. 2018;6(7):1056-64.Doi: 10.1177/2050640618774140 [DOI:10.1177/2050640618774140]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وبگاه متعلق به پژوهش در طب ورزشی و فناوری است.

طراحی و برنامه‌نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by : Yektaweb