1. Joanisse S, Lim C, McKendry J, Mcleod JC, Stokes T, Phillips SM. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000Research. 2020;9. [
DOI:10.12688/f1000research.21588.1]
2. Yin L, Li N, Jia W, Wang N, Liang M, Yang X, et al. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacological research. 2021;172:105807. [
DOI:10.1016/j.phrs.2021.105807]
3. Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, et al. Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle. Archives of physiology and biochemistry. 2014;120(2):64-72. [
DOI:10.3109/13813455.2014.894076]
4. Shin JE, Park SJ, Ahn SI, Choung S-Y. Soluble whey protein hydrolysate ameliorates muscle atrophy induced by immobilization via regulating the PI3K/Akt pathway in C57BL/6 mice. Nutrients. 2020;12(11):3362. [
DOI:10.3390/nu12113362]
5. Kårlund A, Gómez-Gallego C, Turpeinen AM, Palo-Oja O-M, El-Nezami H, Kolehmainen M. Protein supplements and their relation with nutrition, microbiota composition and health: is more protein always better for sportspeople? Nutrients. 2019;11(4):829. [
DOI:10.3390/nu11040829]
6. Vainshtein A, Sandri M. Signaling pathways that control muscle mass. International Journal of Molecular Sciences. 2020;21(13):4759. [
DOI:10.3390/ijms21134759]
7. Ato S, Maruyama Y, Yoshizato H, Ogasawara R. Habitual high-protein diet does not influence muscle protein synthesis in response to acute resistance exercise in rats. Nutrition. 2020;78:110795. [
DOI:10.1016/j.nut.2020.110795]
8. Evans JW. Periodized resistance training for enhancing skeletal muscle hypertrophy and strength: A mini-review. Frontiers in physiology. 2019;10:13. [
DOI:10.3389/fphys.2019.00013]
9. Myers AM, Beam NW, Fakhoury JD. Resistance training for children and adolescents. Translational pediatrics. 2017;6(3):137. [
DOI:10.21037/tp.2017.04.01]
10. Gholipour M, Mazaheri S, Asad MR. Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols. Qom University of Medical Sciences Journal. 2019;13(6):27-37. [
DOI:10.29252/qums.13.6.27]
11. Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, et al. Proline-rich Akt substrate of 40 kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cellular signalling. 2012;24(1):17-24. [
DOI:10.1016/j.cellsig.2011.08.010]
12. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2013;305(6):E760-E5. [
DOI:10.1152/ajpendo.00302.2013]
13. Bonilla DA, Moreno Y. Molecular and metabolic insights of creatine supplementation on resistance training. Revista Colombiana de Química. 2015;44(1):11-8. [
DOI:10.15446/rev.colomb.quim.v44n1.53978]
14. Wiza C, Nascimento EB, Ouwens DM. Role of PRAS40 in Akt and mTOR signaling in health and disease. American Journal of Physiology-Endocrinology and Metabolism. 2012;302(12):E1453-E60. [
DOI:10.1152/ajpendo.00660.2011]
15. Santos CdS, Nascimento FEL. Isolated branched-chain amino acid intake and muscle protein synthesis in humans: a biochemical review. Einstein (Sao Paulo). 2019;17. [
DOI:10.31744/einstein_journal/2019RB4898]
16. Suginohara T, Wakabayashi K, Ato S, Ogasawara R. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on the regulation of mTOR signaling and protein synthesis before and after high-intensity muscle contraction. Metabolism. 2021;114:154419. [
DOI:10.1016/j.metabol.2020.154419]
17. Gholipour M, Seifabadi M, Asad MR. Comparing the effects of endurance and resistance trainings on gene expression involved in protein synthesis and degradation signaling pathways of Wistar rat soleus muscle. Tehran University Medical Journal TUMS Publications. 2020;77(11):668-77.
18. Donges CE, Burd NA, Duffield R, Smith GC, West DW, Short MJ, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. Journal of Applied Physiology. 2012;112(12):1992-2001. [
DOI:10.1152/japplphysiol.00166.2012]
19. Nakayama K, Tagawa R, Saito Y, Sanbongi C. Effects of whey protein hydrolysate ingestion on post-exercise muscle protein synthesis compared with intact whey protein in rats. Nutrition & metabolism. 2019;16:1-7. [
DOI:10.1186/s12986-019-0417-9]
20. Babault N, Païzis C, Deley G, Guérin-Deremaux L, Saniez M-H, Lefranc-Millot C, et al. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. Journal of the International Society of Sports Nutrition. 2015;12(1):3. [
DOI:10.1186/s12970-014-0064-5]
21. Lane MT, Herda TJ, Fry AC, Cooper MA, Andre MJ, Gallagher PM. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey. Biology of sport. 2017;34(2):197-203. [
DOI:10.5114/biolsport.2017.65339]
22. Phillips SM. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Applied physiology, nutrition, and metabolism. 2009;34(3):403-10. [
DOI:10.1139/H09-042]