1. Mokhtari‐Zaer, A., Marefati, N., Atkin, SL., Butler, AE, Sahebkar, A. (2019). The protective role of curcumin in myocardial ischemia-reperfusion injury. Journal of Cellular Physiology. 234(1):214-22. [
DOI:10.1002/jcp.26848]
2. Garza, MA., Wason, EA, Zhang, JQ. (2015). Cardiac remodeling and physical training post myocardial infarction. World Journal of Cardiology. 7(2):52-64. [
DOI:10.4330/wjc.v7.i2.52]
3. Ghahramani, M., Kaikhosro Doulatyari, P, Rouzbahani, M. (2021). Investigation Effect of Exercise and Physical Activity on Cardiac Troponins: A Systematic Review. Journal of Applied Health Studies in Sport Physiology. 8(1):1-10. (Persian)
4. Fernández-Hernando, C., Ackah, E., Yu, J., Suárez, Y., Murata, T., Iwakiri, Y, et al. (2007). Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism. 6(6):446-57. [
DOI:10.1016/j.cmet.2007.10.007]
5. Karam, R., Healy, BP, Wicker, P. (1990). Coronary reserve is depressed in postmyocardial infarction reactive cardiac hypertrophy. Circulation. 81(1):238-46. [
DOI:10.1161/01.CIR.81.1.238]
6. Shiojima, I. (2005). Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. Journal of Clinical Investigation. 115(8):2108-18. [
DOI:10.1172/JCI24682]
7. Lara-Pezzi, E., Felkin, LE., Birks, EJ., Sarathchandra, P., Panse, KD., George, R, et al. (2008). Expression of Follistatin-Related Genes Is Altered in Heart Failure. Endocrinology. 149(11):5822-7. [
DOI:10.1210/en.2008-0151]
8. Ouchi, N., Oshima, Y., Ohashi, K., Higuchi, A., Ikegami, C., Izumiya, Y, et al. (2008). Follistatin-like 1, a Secreted Muscle Protein, Promotes Endothelial Cell Function and Revascularization in Ischemic Tissue through a Nitric-oxide Synthase-dependent Mechanism. Journal of Biological Chemistry. 283(47):32802-11. [
DOI:10.1074/jbc.M803440200]
9. El-Armouche, A., Ouchi, N., Tanaka, K., Doros, G., Wittköpper, K., Schulze, T, et al. (2011). Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. Circulation: Heart Failure. 4(5):621-7. [
DOI:10.1161/CIRCHEARTFAILURE.110.960625]
10. Shimano, M., Ouchi, N., Nakamura, K., van Wijk, B., Ohashi, K., Asaumi, Y, et al. (2011). Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proceedings of the National Academy of Sciences. 108(43):E899-E906. [
DOI:10.1073/pnas.1108559108]
11. Xi, Y., Hao, M, Tian, Z. (2019). Resistance Exercise Increases the Regulation of Skeletal Muscle FSTL1 Consequently Improving Cardiac Angiogenesis in Rats with Myocardial Infarctions. Journal of Science in Sport and Exercise.1-10. [
DOI:10.1007/s42978-019-0009-4]
12. Eulertaimor, G, Heger, J. (2006). The complex pattern of SMAD signaling in the cardiovascular system☆. Cardiovascular Research. 69(1):15-25. [
DOI:10.1016/j.cardiores.2005.07.007]
13. Yuan, S-M, Jing, H. (2010). Cardiac pathologies in relation to Smad-dependent pathways. Interactive CardioVascular and Thoracic Surgery. 11(4):455-60. [
DOI:10.1510/icvts.2010.234773]
14. Sakata, Y., Chancey, AL., Divakaran, VG., Sekiguchi, K., Sivasubramanian, N, Mann, DL. (2007). Transforming growth factor-β receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Research in Cardiology. 103(1):60-8. [
DOI:10.1007/s00395-007-0689-5]
15. Tessone, A., Feinberg, MS., Barbash, IM., Reich, R., Holbova, R., Richmann, M, et al. (2005). Effect of Matrix Metalloproteinase Inhibition by Doxycycline on Myocardial Healing and Remodeling after Myocardial Infarction. Cardiovascular Drugs and Therapy. 19(6):383-90. [
DOI:10.1007/s10557-005-5201-6]
16. Spinale, FG., Gunasinghe, H., Sprunger, PD., Baskin, JM, Bradham, WC. (2002). Extracellular degradative pathways in myocardial remodeling and progression to heart failure. Journal of Cardiac Failure. 8(6):S332-S8. [
DOI:10.1054/jcaf.2002.129259]
17. Cleutjens, JPM., Smits, JFM, Daemen, MJAP. (1992). Type I and III collagen mRNA and protein increase in the infarcted and non-infarcted rat heart after myocardial infarction. Journal of Molecular and Cellular Cardiology. 24:S50. [
DOI:10.1016/0022-2828(92)91651-K]
18. Brown, RD., Ambler, SK., Mitchell, MD, Long, CS. (2005). THE CARDIAC FIBROBLAST: Therapeutic Target in Myocardial Remodeling and Failure. Annual Review of Pharmacology and Toxicology. 45(1):657-87. [
DOI:10.1146/annurev.pharmtox.45.120403.095802]
19. Sun, Y. (2008). Myocardial repair/remodelling following infarction: roles of local factors. Cardiovascular Research. 81(3):482-90. [
DOI:10.1093/cvr/cvn333]
20. Wang, N-P., Wang, Z-F., Tootle, S., Philip, T, Zhao, Z-Q. (2012). Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. British Journal of Pharmacology. 167(7):1550-62. [
DOI:10.1111/j.1476-5381.2012.02109.x]
21. Ma, J., Ma, SY, Ding, CH. (2017). Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor beta1 and matrix metalloproteinase 9 / tissue inhibitor of metalloproteinase 1. Chinese Journal of Integrative Medicine. 23(5):362-9. [
DOI:10.1007/s11655-015-2159-5]
22. Xiao, J., Sheng, X., Zhang, X., Guo, M, Ji, X. (2016). Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Design, Development and Therapy. 10:1267. [
DOI:10.2147/DDDT.S104925]
23. Ma, J., Ma, S-y, Ding, C-h. (2017). Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9/tissue inhibitor of metalloproteinase 1. Chinese Journal of Integrative Medicine. 23(5):362-9. [
DOI:10.1007/s11655-015-2159-5]
24. Whitham, M., Parker, BL., Friedrichsen, M., Hingst, JR., Hjorth, M., Hughes, WE, et al. (2018). Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metabolism. 27(1):237-51. e4. [
DOI:10.1016/j.cmet.2017.12.001]
25. Bei, Y., Xu, T., Lv, D., Yu, P., Xu, J., Che, L, et al. (2017). Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Research in Cardiology. 112(38):1-15. [
DOI:10.1007/s00395-017-0628-z]
26. Choi, H-Y., Han, H-J., Choi, J-w., Jung, H-Y, Joa, K-L. (2018). Superior effects of high-intensity interval training compared to conventional therapy on cardiovascular and psychological aspects in myocardial infarction. Annals of Rehabilitation Medicine. 42(1):145-53. [
DOI:10.5535/arm.2018.42.1.145]
27. Hannan, AL., Hing, W., Simas, V., Climstein, M., Coombes, JS., Jayasinghe, R, et al. (2018). High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. Open Access Journal Sports Medicine. 9:1-17. [
DOI:10.2147/OAJSM.S150596]
28. Ebadi, B., Damirchi, A., Alamdari, KA., Darbandi-Azar, A, Naderi, N. (2018). Cardiomyocyte mitochondrial dynamics in health and disease and the role of exercise training: A brief review. Research in Cardiovascular Medicine. 7(3):107-15. [
DOI:10.4103/rcm.rcm_11_18]
29. Jeremic, N., Weber, GJ., Theilen, NT, Tyagi, SC. (2020). Cardioprotective effects of high‐intensity interval training are mediated through microRNA regulation of mitochondrial and oxidative stress pathways. Journal of Cellular Physiology. 235(6):5229-40. [
DOI:10.1002/jcp.29409]
30. Moieni, A, Hosseini, SA. (2020). Effect of Resistance Training Combined with Curcumin Supplementation on Expression of Regulatory Genes Related to Myocardial Remodeling in Obese Rats. Journal of Applied Health Studies in Sport Physiology. 7(2):45-52. (Persian)
31. Liao, Z., Li, D., Chen, Y., Li, Y., Huang, R., Zhu, K, et al. (2019). Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. Journal of Cellular and Molecular Medicine. 23(12):8328-42. [
DOI:10.1111/jcmm.14710]
32. Wang, B., Zhou, R., Wang, Y., Liu, X., Shou, X., Yang, Y, et al. (2020). Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomedicine & Pharmacotherapy. 131:110690. [
DOI:10.1016/j.biopha.2020.110690]
33. Rodrigues, B., Figueroa, DM., Mostarda, CT., Heeren, MV., Irigoyen, M-C, De Angelis, KJCd. (2007). Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovascular Diabetology. 6(38):1-10. [
DOI:10.1186/1475-2840-6-38]
34. Hafstad, AD., Lund, J., Hadler-Olsen, E., Höper, AC., Larsen, TS, Aasum, E. (2013). High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes. 62(7):2287-94. [
DOI:10.2337/db12-1580]
35. Biswas, J., Roy, S., Mukherjee, S., Sinha, D, Roy, MJAPjocpA. (2010). Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. 11(1):239-47.
36. Shen, H., Cui, G., Li, Y., Ye, W., Sun, Y., Zhang, Z, et al. (2019). Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Research & Therapy. 10(1):17. [
DOI:10.1186/s13287-018-1111-y]
37. Kon, M., Ebi, Y, Nakagaki, K. (2019). Effects of acute sprint interval exercise on follistatin-like 1 and apelin secretions. Archives of Physiology and Biochemistry.1-5. [
DOI:10.1080/13813455.2019.1628067]
38. Xi, Y., Gong, D-W, Tian, Z. (2016). FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Scientific reports. 6(1):1-11. [
DOI:10.1038/srep32424]
39. Wei, K., Serpooshan, V., Hurtado, C., Diez-Cunado, M., Zhao, M., Maruyama, S, et al. (2015). Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 525(7570):479-85. [
DOI:10.1038/nature15372]
40. Wang, S-Q., Li, D, Yuan, Y. (2019). Long-term moderate intensity exercise alleviates myocardial fibrosis in type 2 diabetic rats via inhibitions of oxidative stress and TGF-β1/Smad pathway. The Journal of Physiological Sciences. 69(6):861-73. [
DOI:10.1007/s12576-019-00696-3]
41. Schreckenberg, R., Horn, A-M., da Costa Rebelo, RM., Simsekyilmaz, S., Niemann, B., Li, L, et al. (2017). Effects of 6-months' Exercise on Cardiac Function, Structure and Metabolism in Female Hypertensive Rats-The Decisive Role of Lysyl Oxidase and Collagen III. Frontiers in Physiology. 8(556):1-11. [
DOI:10.3389/fphys.2017.00556]
42. Rodríguez, C., Martínez-González, J., Raposo, B., Alcudia, JF., Guadall, A, Badimon, L. (2008). Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovascular Research. 79(1):7-13. [
DOI:10.1093/cvr/cvn102]
43. López, B., González, A., Hermida, N., Valencia, F., de Teresa, E, Díez, J. (2010). Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. American Journal of Physiology-Heart and Circulatory Physiology. 299(1):H1-H9. [
DOI:10.1152/ajpheart.00335.2010]
44. Giampuzzi, M., Botti, G., Di Duca, M., Arata, L., Ghiggeri, G., Gusmano, R, et al. (2000). Lysyl oxidase activates the transcription activity of human collagene iii promoter possible involvement of ku antigen. Journal of Biological Chemistry. 275(46):36341-9. [
DOI:10.1074/jbc.M003362200]
45. de Souza, RR. (2002). Aging of myocardial collagen. Biogerontology. 3(6):325-35. [
DOI:10.1023/A:1021312027486]
46. Watanabe, T., Kusachi, S., Yamanishi, A., Kumashiro, H., Nunoyama, H., Sano, I, et al. (1998). Localization of Type IV Collagen α Chain in the Myocardium of Dilated and Hypertrophic Cardiomyopathy. Japanese Heart Journal. 39(6):753-62. [
DOI:10.1536/ihj.39.753]
47. Nielsen, SH., Mouton, AJ., DeLeon-Pennell, KY., Genovese, F., Karsdal, M, Lindsey, ML. (2019). Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biology. 75-76:43-57. [
DOI:10.1016/j.matbio.2017.12.001]
48. Varga, I., Kyselovič, J., Galfiova, P, Danisovic, L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. In: Xiao J, editor. Exercise for Cardiovascular Disease Prevention and Treatment: From Molecular to Clinical, Part 1. 999. Singapore: Springer Singapore; 2017. p. 117-36. [
DOI:10.1007/978-981-10-4307-9_8]
49. Zhou, D., Hao, D., Wei, L., Zhang, T., Weimin, L., Zhang, X, et al. (2017). Effect of aerobics exercise on myocardial fibrosis after acute myocardial infarction in rat. Journal of Chinese Physician. 19(6):852-4.
50. de Freitas, JS., Neves, CA., Del Carlo, RJ., Belfort, FG., Lavorato, VN., Silame-Gomes, LHL, et al. (2019). Effects of exercise training and stem cell therapy on the left ventricle of infarcted rats. Revista Portuguesa de Cardiologia (English Edition). 38(9):649-56. [
DOI:10.1016/j.repce.2019.02.014]
51. Szabó, R., Karácsonyi, Z., Börzsei, D., Juhász, B., Al-Awar, A., Török, S, et al. (2018). Role of exercise-induced cardiac remodeling in ovariectomized female rats. Oxidative Medicine and Cellular Longevity. 2018:6709742. [
DOI:10.1155/2018/6709742]
52. Amani, M., Jeddi, S., Ahmadiasl, N., Usefzade, N, Zaman, J. (2013). Effect of HEMADO on Level of CK-MB and LDH Enzymes after Ischemia/Reperfusion Injury in Isolated Rat Heart. Bioimpacts. 3(2):101-4.
53. Yang, Z., Berr, SS., Gilson, WD., Toufektsian, M-C, French, BA. (2004). Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation. 109(9):1161-7. [
DOI:10.1161/01.CIR.0000118495.88442.32]
54. Nirmala, C, Puvanakrishnan, R. (1996). Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Molecular and Cellular Biochemistry. 159(2):85-93. [
DOI:10.1007/BF00420910]
55. Boarescu, P-M., Chirilă, I., Bulboacă, AE., Bocșan, IC., Pop, RM., Gheban, D, et al. (2019). Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxidative Medicine and Cellular Longevity. 2019. 7847142. [
DOI:10.1155/2019/7847142]